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Abstract 
Dependable mobile computing is enhanced by indepen- 

dent recovery, low power consumption and no dependence 
on stable storage at the mobile host. Existing recovery pro- 
tocols proposed for mobile environments typically create 
consistent global checkpoints that do not guarantee inde- 
pendent recovery- and low power consumption. This paper 
demonstrates the advantages of message logging by de- 
scribing a receiver based logging protocol. Checkpointing 
is utilized to limit log size and recovery latency. We com- 
pare the performance of our approach with that of existing 
mobile checkpointing and recovery algorithms in terms of 
failure free overhead and recovery time. We also describe a 
stable storage management scheme for mobile support sta- 
tions. Garbage collection is achieved without direct par- 
ticipation of mobile hosts. 

1    Introduction 
Mobile computing [1,2] presents new challenges and 

requirements for checkpointing and recovery protocols [3]. 
Failures such as loss of connection or power outages that 
are rare in fixed networks can be common in mobile en- 
vironments. Recovery algorithms are required to tolerate 
multiple simultaneous failures and failure during recovery, 
and it is desirable that processes be able to recover inde- 
pendently. Coordinated recovery among processes running 
on Mobile Hosts (MH) may slow down recovery [4] and 
increase the chance of having multiple rollbacks of the en- 
tire system in order to handle errors during recovery. Con- 
serving battery power by means of limiting the number of 
extra messages during checkpointing and recovery is also 
important. Limiting additional transmitted messages has 
the added benefit of reducing contention on the wireless 
network. 

As an MH may be lost or permanently damaged, hard 
drives on mobile hosts are not generally considered stable 
storage. Therefore they are not suitable as the only loca- 
tion for storing checkpoints or message logs. Traditional 
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checkpointing and message logging algorithms [5-12] are 
not directly applicable under such conditions. Previous 
proposals have suggested that checkpoints be sent back to 
Home Agents (HA) [13]. Others have proposed that sta- 
ble storage on Mobile Support Stations (MSS) be used for 
checkpoints and message logs [14-16]. Because check- 
points and/or message logs are stored on different MSSs 
as an MH moves from cell to cell, the organization of the 
distributed process state information is important for suc- 
cessful recovery. Several algorithms have been proposed to 
solve these problems [14,17]. Garbage collection of stable 
storage on MSS is also of importance. When state infor- 
mation on MSS is no longer needed for recovery, it should 
be discarded to make room for new checkpoints and mes- 
sage logs. Most present schemes require cooperation from 
mobile hosts. If one participating MH fails, some stable 
storage may never be collected for reuse. 

Checkpointing and recovery protocols previously pro- 
posed for mobile environments have typically saved con- 
sistent global checkpoints [13,15,18,19]. This requires all 
participating mobile hosts to roll back during recovery, but 
some mobile hosts may net be able to rollback due to tran- 
sient or permanent failures. This approach forces applica- 
tion messages to be resent over the slow wireless network 
during recovery, resulting in slow recovery and additional 
power usage at the MH. Recent work has shown through 
analytic modeling that message logging can be an attractive 
approach to recovery in mobile environments [14]. An- 
other recent research project has derived mechanisms for 
managing stable storage on the MSS [20]. 

This paper describes a receiver-based pessimistic mes- 
sage logging protocol for MH, MSS and HA, and a dis- 
tributed state organization scheme for mobile computing 
environments. Using our approach, processes running on 
mobile hosts are able to recover quickly and indepen- 
dently of other processes. The protocol is experimentally 
compared with an ideal consistent checkpoint protocol to 
demonstrate that message logging incurs similar failure 
free overhead and achieves much faster recovery in a wire- 
less network implementation. This approach requires no 
extra control messages sent by the MH. Garbage collection 
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is achieved without direct participation of the MH. Even if 
the MH permanently fails, state information left on MSSs 
can be identified and discarded. 

2   The Mobile IP Environment 
The mobile computing environment used in this paper is 

based on the Mobile IP architecture [2]. This environment, 
as illustrated in Figure 1, contains fixed hosts connected 
by a backbone network and mobile hosts that use a wire- 
less interface to communicate with fixed hosts and other 
mobile hosts.  Each MH is associated with a home net- 
work on which the MH receives packets like a normal fixed 
host. Each MH is also assigned a home address that has 
the subnet prefix of its home network. The home address 
never changes, regardless of the MH's movement. Mobile 
support stations (foreign agents) are those fixed hosts that 
have both a wireless interface and a fixed network (Eth- 
ernet, ATM, etc.) interface. They function as routers and 
provide connections for mobile hosts to the entire network. 
The area that a mobile support station's wireless interface 
serves is called a cell. As mobile hosts move from cell to 
cell, their IP addresses have to be changed to reflect the 
subnet mask of their new mobile support stations. This can 
cause difficulty in maintaining a connection as the MH tra- 
verses cells. Mobile IP solves this problem by providing 
both home agents and foreign agents. 

When communicating with a mobile host, other hosts 
always send packets to the mobile host's home address. A 
home agent executes on the mobile host's home network. It 
maintains current location information of the mobile hosts. 
Packets destined for mobile hosts are intercepted by the 
home agent and then tunneled to the current foreign agent 
that is serving the mobile host. Packets are then deliv- 
ered to the mobile host by the foreign agent. Packets sent 
by mobile hosts are generally delivered to their destina- 
tion using standard IP routing mechanisms, not necessarily 
through the home agent. An example is illustrated in Fig- 
ure 1. Packets from mobile host A follow the dotted line 
and pass an FA, a HA, and an FA, before reaching mobile 
host B. 

One of the distinctive features of this architecture is the 
existence of home agents. When an MH switches cells, the 
home agent must know where the mobile host is located be- 
fore any future packets can be delivered to the mobile host. 
This suggests that the home agent might be an attractive 
place to log messages for mobile hosts. However there are 
routing optimizations proposed in the literature [21] that 
route some packets directly to the foreign agent of the mo- 
bile host instead of through its home agent. On the other 
hand, we observe that all packets sent to mobile hosts must 
reach the mobile support station first before transmission 
through the wireless interface. In our approach stable stor- 
age at the MSS is used to store checkpoints and message 

Home Agent 
Foreign Agent Mobile Host B 

Figure 1: The mobile IP environment. 

logs for mobile hosts. 
We assume that the foreign agents and home agents do 

not fail when serving mobile hosts that are executing the 
checkpoint and roll-back recovery protocol. MSS and HA 
typically have a much smaller failure rate than that of MHs 
as they run on fixed networks. Even if they do fail, since 
HA and FA are processes that implement carefully defined 
state machines, checkpointing and message logging pro- 
tocols can be designed relatively easily to tolerate those 
failures [22]. 

There can be multiple processes running on a single mo- 
bile host. They can have fail-stop failures independent of 
each other, or fail at the same time as the mobile host. Fi- 
nally, we assume that MHs communicate with MSSs using 
a FIFO link level protocol, processes communicate with 
each other using TCP (or other reliable transport proto- 
col) over Mobile IP, and processes execute according to 
the piece wise deterministic model. 

3   Related Work 
Elnozahy, Johnson, and Wang developed a general sur- 

vey for checkpointing and message logging protocols in 
distributed systems [23]. Alvisi and Marzullo have pro- 
vided an in-depth treatment of message logging [24]. Rao 
and Alvisi compared the cost of recovery for different mes- 
sage logging approaches [4], and Neves and Fuchs [25] 
compared recovery speed for a coordinated checkpoint 
protocol [13] and a sender based message logging proto- 
col [8]. 

Acharya and Badrinath [15] introduced a two-phase 
method for taking global consistent checkpoints. They pro- 
posed that checkpoints be stored on the stable storage of 
mobile support stations instead of on mobile hosts. In their 
protocol, processes alternate between two states, SEND 
and RECV. If a process is in the SEND mode and receives a 
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Figure 2: Message logging algorithm. 

message, it is forced to take a checkpoint. During recovery, 
the global state is reconstructed from a set of checkpoints 
for each process. 

Pradhan, et al. analytically evaluated the performance 
of different state saving protocols and hand off strate- 
gies [14]. They also suggested storing checkpoints and 
message logs at mobile support stations. Their result indi- 
cates that message logging is suitable for mobile environ- 
ments except in cases where the mobile host has high mo- 
bility, wireless bandwidth is low, and failure rate is high. 

A hybrid checkpoint-recovery protocol for mobile sys- 
tems was proposed by Higake and Takizawa [17]. As a 
mobile host moves between cells, it leaves an agent pro- 
cess on each mobile support station on its itinerary. Dur- 
ing recovery, processes on fixed hosts recover from consis- 
tent checkpoints and processes on mobile hosts restart from 
their own checkpoints and roll to a state that is consistent 
with those on fixed hosts with the help of agent processes. 

Cao and Singhal proved that it is not possible for a 
checkpoint algorithm to preserve both non blocking and 
min process properties at the same time [18]. This work is 
based on an earlier work that tried to achieve non blocking 
and min processes at the same time [16]. They also pro- 
posed a non-blocking mobile checkpointing protocol [19]. 
Their scheme uses mutable checkpoints to avoid storing 
unnecessary checkpoints on mobile support stations. 

Neves and Fuchs [13] developed an adaptive check- 
pointing scheme for mobile computing. Their protocol 
uses time to indirectly coordinate the creation of recover- 
able consistent checkpoints. Processes take hard check- 
points that are sent to home agents and soft checkpoints 
that are stored on the local disk of the mobile host. 

4   Algorithm Description 
4.1   Message Logging and Checkpointing 

The message logging and checkpointing algorithm of 
this paper consists of three parts: one that executes on the 
MSS, one that executes at the HA, and one implemented 
by application processes on the mobile host. The protocol 
implemented by application processes on the mobile host 
is similar to existing message logging protocols. Processes 
tag every sent message and store a copy of the tag in mem- 
ory. Upon receiving a message, a process also stores the 
tag of the received message in memory. The tag includes 
the message sequence number, a globally unique process 
identifier, and the tag of the last message received by the 
sending process. The process periodically writes check- 
points to the MSS that is currently serving as its foreign 
agent. Checkpoints are taken in a non-blocking fashion us- 
ing copy on write [26]. The checkpoint includes not only 
the process state information necessary to recover the pro- 
cess, but also the tags of the last message it sent and re- 
ceived before the checkpoint. 

Mobile IP maintains the TCP connection as the MH 
moves, thus switching cells when writing checkpoints does 
not create problems. Packets sent by the MH are routed 
as conventional IP, instead of having to go through the 
HA, thus not degrading performance on the MSS. When 
the MH switches cells, application processes are notified. 
Each process sends to the new MSS a Report Message that 
contains the tag of the last message it received from the old 
MSS. These messages can be piggybacked in the registra- 
tion packet specified by the Mobile IP protocol. 

Every time an MH enters a MSS's cell, the MSS assigns 
a unique id for the message log of each application pro- 
cess executing the message logging protocol on the MH. If 
the MH has visited this MSS before, the ids assigned are 
greater than those previous. Messages destined for mobile 
hosts in the MSS's cell are logged on the MSS before being 
forwarded. The sequence of messages seen by the mobile 
host are the same as seen and logged by the MSS due to 
the FIFO link-level wireless protocol. Some messages can 
be logged by the MSS and not yet delivered to the MH. 
This type of message is an in transit message. The new 
MSS forwards report messages sent to it from the MH at 
cell switch time to the old MSS of the MH. The old MSS 
can then use the last received message tag for each appli- 
cation process to detect in transit messages and can purge 
them from message logs. After each mobile host leaves a 
cell, the MSS that the MH just left sends a message to the 
MH's HA reporting the messages log ids for each applica- 
tion process on this MH. If an MH writes a checkpoint to 
an MSS, the MSS sends a checkpoint message to the MH's 
HA indicating that it has finished storing the checkpoint for 
the MH. In the event that a process failed on an MH, or the 
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MH failed, the MSS that was serving the MH detects the 
error and sends its home agent a Failed Message that con- 
tains message tags of the last sent message for each failed 
application to the MH's HA. 

On the HA, a process keeps track of the location of an 
MH using the registration procedure specified by the Mo- 
bile IP protocol. It saves the whole itinerary taken by the 
mobile host into an array named itinerary array. Each el- 
ement of the array is the address of an MSS on the MH's 
path. The HA waits for the checkpoint message from the 
MSS that contains the location of the last finished check- 
point of the mobile host. Upon receiving this message, the 
HA may begin the garbage collection procedure to reclaim 
stable storage on the MSSs. 

The HA also serves as an MSS on the home network. 
It executes the protocol for MSSs in addition to HA pro- 
tocols. If an MH does not use the wireless interface on its 
home network, its HA has to deviate from standard Mobile 
IP so that the HA can intercept and log messages destined 
for MHs that are "at home". 

In our protocol, checkpoints are taken periodically and 
stored on MSSs. As one reviewer pointed out, using two 
kinds of checkpoints [13], one stored on the MH host's 
local disk and one on the MSSs can reduce power con- 
sumption of the mobile host even further (as a smaller num- 
ber of checkpoints are sent through the wireless interface) 
and achieve even faster recovery if the local disk survives 
failure. The HA must be aware of these "possibly stable" 
checkpoints so that it can know which message logs should 
be sent to the MH. The associated cost is that larger mes- 
sage logs have to be stored at MSSs and extra processing 
performed at HAs. Also, if the local disk on the MH fails, 
recovery can take longer. Depending on the application, 
network characteristics and type of mobile hosts, this can 
serve as a viable alternative to saving all checkpoints on 
MSSs. 

If processes running on mobile hosts maintain multi- 
ple TCP connections with other processes, they can see 
a different sequence of messages from those by the for- 
eign agents due to scheduling in the thread library. During 
recovery they could take an execution path different from 
that before the failure. To ensure correctness, we limit ap- 
plications running on the mobile hosts to be a single mes- 
sage queue shared by multiple processes, or a single pro- 
cess with one TCP connection. 

Figure 2 illustrates the effects of the logging algorithm. 
As a mobile host moves along the dashed line, MSSs on its 
itinerary log messages for the mobile host. The mobile host 
takes a checkpoint while at MSS2. All this information is 
sent to the HA for further processing. 

MSS1 discards log 
MSS2 trims log before 

checkpoint 

MSS1 

4.2 

Figure 3: Garbage collection. 

Distributed State Information and Garbage 
Collection 

As the MH moves from cell to cell, it leaves message 
logs and checkpoints on the MSSs that are on its itinerary. 
Itinerary information kept at its HA is used to reconstruct 
a consistent state for the MH. The HA knows on which 
MSS the last checkpoints are stored for each application 
process on the MH by examining the checkpoint messages 
sent to it by MSSs. Messages logged after the checkpoint 
will have to be replayed in order for processes on the MH to 
recover. All other logged messages and previously stored 
checkpoints are no longer needed for recovery. 

An example is sketched in Figure 3. Assume there is 
only one application process P executing on the MH. The 
MH moves from MSS1 to MSS3 and P takes a checkpoint 
on MSS2. HA has the MH's itinerary and the location of 
P's checkpoint stored in its memory. Since the HA knows 
that a checkpoint for P has been taken at MSS2, the HA can 
now ask MSS1 to delete message logs for process P, and 
ask MSS2 to delete messages logged prior to the check- 
point since they are no longer necessary for recovery. 

Garbage collection is straight forward. After receiving 
a checkpoint message from an MSS, the HA examines its 
itinerary array and determines which message log is useful 
and which is rendered obsolete by the checkpoint. The HA 
sends out requests to those MSS with stale message logs 
and checkpoints so that they can garbage collect the stable 
storage. This request includes message log identifiers so 
that the MSS can distinguish among multiple logs in case 
the MH visits the MSS several times. Upon receiving the 
request, the MSS removes obsolete message logs and/or 
checkpoints, then sends back an ACK to HA: After receiv- 
ing all the ACKs, the HA trims its itinerary array. The HA 
can also start the garbage collection either periodically to 



MSS1 

-V\\ MSS3 
MSS2-MSS3 send log 

MSS2 sends checkpoint 

HA 

Figure 4: Recovery algorithm. 

limit the length of the itinerary array or if stable storage at 
the MSS becomes depleted. 

4.3   Recovery Algorithm 

A mobile host restarts a failed process by sending to 
its HA a message containing the id of the process to be 
restarted. The HA responds by sending to the MH the 
message tag of the last message sent out by the process. 
The HA determines which MSS currently holds the lat- 
est checkpoint for this process and asks the MSS to send 
the checkpoint to the MH. Then the HA sends requests to 
MSSs that hold message logs for the process, which then 
in turn replay the log so that the process receives messages 
in the same order as before failure. When replaying the 
logged messages, Ihe MSSs mark them as "replayed" so 
that they are not logged by the receiving MSS. If other pro- 
cesses continue to send messages to the recovering process, 
these messages will be logged and sent to the MH as nor- 
mal messages, but they are not delivered to the application 
until after the recovery is complete. Figure 4 illustrates this 
procedure. 

If an application attempts to send messages during re- 
covery, the message tag is compared to the tag of the last 
message sent by the process before failure. If the tag in- 
dicates that the message has been sent before the failure, 
the message is not transmitted by the MH. This prevents 
the MH from re-transmitting application messages previ- 
ously sent during recovery, thereby saving bandwidth and 
battery power. Failures during recovery are handled in the 
same way as failures during normal execution, since mes- 
sages sent to the MH during recovery are logged on the 
MSS as normal messages. 

4.4   Limited Stable Storage on Mobile Support 
Stations 

If a mobile support station depletes its stable storage 
while trying to store checkpoints or message logs on behalf 
of mobile hosts, it has to either halt and perform garbage 
collection or find alternative storage. Halting an MSS ef- 
fectively blocks every process on every mobile host in the 
MSS's cell. All incoming packets for mobile hosts are lost 
and must be resent later. Managing stable storage on the 
MSSs to reduce the frequency of blocking is therefore crit- 
ical. Stable storage management is the focus of another 
recent project [20]. 

One way to reduce the possibility of halting an MSS is 
to use watermarks. When free stable storage on an MSS 
reaches a low watermark, that MSS selects a process as the 
target of garbage collection, forces it to take a checkpoint 
(maybe on another MSS), and discards previous message 
logs and checkpoints saved for that process. 

Halting an MSS can also be avoided when storage is de- 
pleted by forwarding the logs and checkpoints to the mo- 
bile host's home agent, if there is enough bandwidth in the 
backbone network. The MSS can then execute the garbage 
collection algorithm. Another alternative is to have other 
MSSs or routers on the route of the packets store message 
logs. The MSS on the last hop can simply forward packets 
to the MH without logging them. This requires some sig- 
naling messages be sent to the HA so that the HA knows 
the exact locations of the logs. 

5    Experimental Results 
We compare the performance of our protocol with an 

ideal coordinated checkpoint protocol that takes periodic 
checkpoints without exchanging any messages. Failure 
free overhead and recovery time are evaluated. 

5.1    Experiment 

The specific environment used in the experiment is 
shown in Figure 5. A Sun Sparc 20 workstation running 
Solaris 2.6 with 320M memory and a Lucent Technology 
Wavepoint II [27] connected by 10M Ethernet served as 
the mobile support station. Checkpoints and message logs 
were stored on a dedicated file server that was connected 
to the workstation using a high speed ATM network. Two 
Pentium II 300MHz PCs equipped with Lucent Technol- 
ogy's Wavelan [27] wireless interface cards served as the 
mobile hosts. The PCs were running Windows NT 4.0 with 
256M memory each. In our implementation, processes ex- 
ecuted pre-generated traces that emulated WWW brows- 
ing behavior. The processes also functioned as servers and 
they read requests and generated replies in both sleep and 
request states. There were four client processes running, 
two on each PC. Each client was assigned a unique ID. 
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Table 1: Execution Time Overhead Comparison. 

Trace unmodified 
(seconds) 

ckpt 
(seconds) 

ckpt 
Overhead(%) 

log with ckpt 
(seconds) 

log with ckpt 
Overhead(%) 

Tl 1180.2 1243.6 5.3 1234.5 4.60 
T2 869.1 9067.5 4.3 915.5 5.34 
T3 1013.4 1060.1 4.6 1066.1 5.20 
T4 871.5 898.1 3.0 905.6 3.92 
T5 911.3 957.6 5.0 950.6 4.32 
T6 866.7 910.0 4.9 913.1 5.35 
T7 850.7 891.9 4.8 876.6 3.04 

ATM switch Sun Ultra 2 
file server 

Figure 5: Experiment environment. 

For routing and processing, a client attached to each mes- 
sage it transmitted a header that contained the destination 
ID, the type of message (request or reply), and the ID of 
the sender. Clients did not send messages directly to each 
other. Instead, they sent messages over the wireless net- 
work to a server process running on the Sun workstation. 
The server process was responsible for storing checkpoints 
and message logs as requested by the client processes. It 
also functioned as a router by examining the header field 
of each message and forwarding messages to their destina- 
tion. 

Checkpoints were not actual restartable process states, 
but were large messages intended to represent a range of 
reasonable state sizes for mobile hosts. Client processes 
had a separate thread that periodically sent checkpoints to 
a server. The server process also had separate threads that 
listened for checkpoints and wrote them to disk. Check- 
pointing was asynchronous. 

5.2    Trace Generation 
Request traces were generated from four individual 

traces to represent a variety of network load. These four 
individual traces represented the process sleep interval 
(SLEEP), number of requests sent during each active in- 
terval (NUMBER), the request packet distribution (RQ), 
and the reply packet distribution (RY). The request packet 
distribution was small as HTTP requests are typically less 
than several hundred bytes. Reply packets were large with 
a large variance to reflect the nature of a typical web- 
servers' output. When accessing a web page, several re- 
quests are typically sent to the web server. We captured 
this behavior with the NUMBER trace. 

A utility program read the first three traces and gener- 
ated request traces used by each client. This program first 
read a value from the SLEEP trace and multiplied it by 
1000 and a predefined coefficient to obtain the sleep time in 
milliseconds. The time value was written into the request 
trace file. The NUMBER trace was then read to determine 
how many request events were to be written out and the 
destination for these requests was randomly chosen. For 
every request event, the request length was read from the 
RQ trace. Seven traces (Tl... T7) were generated, with co- 
efficient of 1/2, 1/4,... 1/128. By using several ratios, we 
obtained a variety of traces that represent distinct network 
loads. 

5.3   Failure Free Overhead 
The applications were first executed unmodified with- 

out message logging and checkpointing. They then ran 
with only periodic checkpointing enabled. Finally, the ap- 
plication executed with both checkpointing and message 
logging enabled. The checkpointing interval was five min- 
utes. The execution times shown in the following figures 
and tables are the average of three runs. Total execution 
time of the three cases for different traces was measured 
and is shown in Table 1 and Figure 6. The overheads in- 
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Table 2: Recovery Time Comparison. 

Tl        T2        T3        T4        T5        T6        T7 

Figure 6: Normal execution overhead. 

Tl        T2       T3        T4       T5        T6       T7 

Figure 7: Recovery time. 

curred by the coordinated checkpointing protocol and the 
message logging protocol are also shown. 

5.4 Recovery Time 
Recovery time is obtained by measuring the time for a 

process to read the checkpoint and proceed to a specific ex- 
ecution point. In our experiments, we chose that point to 
be after the 500th event in the request trace file. No check- 
pointing or message logging takes place during recovery. 
Recovery times for the consistent checkpointing protocol 
and the message logging protocol are measured and shown 
in Table 2 and Figure 7. 

5.5 Discussion 
From the failure free overhead data we see that for 

all of the traces message logging has similar performance 
to checkpointing without logging. The largest difference 

Trace Using ckpts 
(seconds) 

Using message logs 
(seconds) 

Tl 326.5 131.9 
T2 200.4 19.82 
T3 260.0 70.28 
T4 191.00 23.16 
T5 220.9 44.14 
T6 202.6 27.67 
T7 195.5 18.98 

is less than 2 percent of the execution time without any 
checkpoints. When message logging is performed, the pro- 
cesses take checkpoints at the same frequency as the stan- 
dard checkpointing protocol. The experiments illustrate 
that the overhead due to logging messages at the MSS is 
negligible. The reason is that messages are not written to 
disk before being forwarded to the MH. 

As is known for fixed networks, recovery using message 
logging is often faster than that based on standard check- 
points. The processes recovered three to ten times faster 
using message logs than with checkpoints in our experi- 
ments with the Wavelan wireless network. Processes did 
not have to block and wait for other processes to transmit 
messages. Messages were also transmitted over the wire- 
less link just once instead of twice, as in normal execution, 
resulting in less contention on the wireless network and 
lower latency for message transmission. 

An interesting phenomenon is that for some traces the 
overhead due to message logging and checkpointing is ac- 
tually less than that due to checkpointing. One explanation 
is that the action of logging message changed the timing of 
messages transmitted on the wireless network and thereby 
contentions were reduced. 

6    Conclusions 
This paper described a message logging protocol for 

mobile hosts, mobile support stations and home agents in 
a Mobile IP environment. An approach to organizing the 
distributed state information was also presented. The or- 
ganizing scheme provides easy garbage collection without 
participation from mobile hosts and can tolerate the case 
where some mobile support stations do not have enough 
stable storage for mobile hosts to store state information. 

Failure free overhead and recovery speed were com- 
pared between an ideal consistent checkpoint protocol and 
our message logging protocol. Message logging incurred 
only marginally larger overhead during failure free opera- 
tion compared to the ideal consistent checkpointing proto- 
col. Message logging has a decided advantage in recovery 
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with mobile wireless networks. 
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